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Abstract—Wearable health-monitoring systems (WHMSs) rep-
resent the new generation of healthcare by providing real-
time unobtrusive monitoring of patients’ physiological parame-
ters through the deployment of several on-body and even intra-
body biosensors. Although several technological issues regarding
WHMS still need to be resolved in order to become more applica-
ble in real-life scenarios, it is expected that continuous ambulatory
monitoring of vital signs will enable proactive personal health man-
agement and better treatment of patients suffering from chronic
diseases, of the elderly population, and of emergency situations. In
this paper, we present a physiological data fusion model for mul-
tisensor WHMS called Prognosis. The proposed methodology is
based on a fuzzy regular language for the generation of the prog-
noses of the health conditions of the patient, whereby the current
state of the corresponding fuzzy finite-state machine signifies the
current estimated health state and context of the patient. The oper-
ation of the proposed scheme is explained via detailed examples in
hypothetical scenarios. Finally, a stochastic Petri net model of the
human–device interaction is presented, which illustrates how ad-
ditional health status feedback can be obtained from the WHMS’
user.

Index Terms—Decision support system (DSS), formal language,
fuzzy finite-state machine (FSM), fuzzy sets, human–machine in-
teraction, stochastic Petri net (SPN), vital signs, wearable health-
monitoring system (WHMS).

I. INTRODUCTION

I T IS a fact that the global population is both growing and age-
ing [1], [2]. As a consequence of this demographic change,

there has also been a corresponding increase in chronic age-
related diseases, such as congestive heart failure, dementia, sleep
apnea, cancer, diabetes, and chronic obstructive pulmonary dis-
ease [1], [3], [4]. Furthermore, the total number of people suf-
fering from some type of disability (either life-long, or injury-
related, or more commonly related to chronic conditions) will
continue to rise [5]. In addition to that, approximately 33% of
persons over the age of 65 and 50% of persons over the age
of 85 experience a fall each year [6], [7]. For this population,
healthcare costs are increasing [8], quality of life and produc-
tivity are reclining, and in many cases, family members serve as
primary-care assistants.
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These issues along with the challenges of effectively manag-
ing and treating postoperative rehabilitation patients, disabled
people, and persons with special abilities, highlight the re-
quirement for new and innovative ways to deliver healthcare
to patients. In response to that, information and communication
technologies are expected to provide the means to realize per-
sonalized, low-cost, and citizen-centered healthcare solutions to
address the previously stated challenges [9]. Recent advances in
sensor communication, sensor miniaturization, and microelec-
tronics have enabled healthcare providers to monitor and man-
age chronic diseases and detect potentially urgent or emergent
conditions [10]. Health monitoring in the home environment
can be accomplished by either or both of the following [11]:
1) ambulatory monitors that utilize wearable sensors and de-
vices to record physiological signals and 2) sensors embedded
in the home environment and furnishings to collect behavioral
and physiological data unobtrusively. Acceptance and positive
psychological impact of monitoring technology have been con-
firmed in studies that have included people with dementia as
well as other chronic conditions [12].

Moving a step further, early detection and diagnosis of crit-
ical health changes could enable prevention of most of these
problems, saving billions of dollars annually [13], [14]. Early
detection, however, requires continual vigilance. Due to the na-
ture of their conditions or the lack of training and experience,
many among this population are either disinclined or unable to
detect and report the critical observations that could make a dif-
ference. Early approaches toward addressing this issue were for
healthcare professionals to monitor patients directly or via rel-
atively crude and bulky physiological data collection devices.
Obviously, devices of such size and cost, which also include
several wires and require the patient to be immobilized in order
to acquire reliable measurements, are unsuitable when ubiqui-
tous, unobtrusive, long-term, and low-cost health monitoring is
desired. However, the new generation of inexpensive, unobtru-
sive wearable/implanted devices [15] could potentially lead to
early and automatic detection of critical changes onto a patient’s
health condition. In this context, such devices should not just be
simple data collection appliances, nor should they only report
variations from sampled population norms. Rather, they should
be able to learn individual user baselines and also employ ad-
vanced information processing algorithms and diagnostics in
order to discover problems autonomously and detect alarming
health trends, and consequently, inform medical professionals
for further assistance. These wearable systems should also be
engineered to integrate seamlessly both with portable equipment
carried by first-responders and with fixed-location systems in-
stalled in hospitals. As a result, these devices will continuously
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capture data, organize it into customized patient and condition
models, and communicate each patient’s unique information to
first-responders and hospital personnel.

In this paper, we present our approach toward establishing an
operational framework for a novel interactive, individualized,
and intelligent wearable health-monitoring prototype, which
we call Prognosis. The rest of the paper is organized as follows.
Section II will give a brief review on wearable health-monitoring
systems (WHMSs) and decision-support mechanisms.
Section III will introduce the overall concept of the proposed
system, based on a described generic architecture and current
availability of wearable biosensors. In Section IV, the proposed
physiological data fusion strategy will be elaborated, by
providing a formal definition of the model and illustrative
examples of its operation. In Section V, we will provide an
SPN-based model of the interaction scheme between user
and the system. Finally, the paper will be concluded with a
discussion on current and future work.

II. RELATED WORK

Ambulatory monitoring of physiological parameters through
the use of wearable or even implantable biosensors has been a
research area of high interest during the past years [15], [16].
Mainly driven by increasing healthcare costs and the need to
provide medical care to the increasing population of elderly [8],
WHMS have the potential to realize consumer-operated per-
sonal health management and early risk detection and preven-
tion [16].

We have provided a comprehensive review of the current
state of the art in WHMS in [17]. In our survey, we empha-
sized on the several features that WHMS must meet, such as
wearability, unobtrusiveness, low-cost, robustness, scalability,
security, and privacy of medical data, low-power consump-
tion, ease of use, and embedded decision support. We identi-
fied several approaches toward designing wearable system for
health-monitoring purposes, e.g., systems based on 1) smart-
textiles [18], [19]; 2) custom-designed platforms [20], [21];
3) wireless sensor motes [22], [23]; and 4) Bluetooth-enabled
biosensors and smart-phones [24], [25]. This paper has iden-
tified several shortcomings in current WHMS technology, the
most important being battery and power issues for long-term
monitoring, security of private information, clinical validation of
prototypes, and system bulkiness. Future research in nanotech-
nology, sensor miniaturization, low-energy IC design, energy
scavenging techniques, wireless sensor networks, and signal
processing promise to provide the means to efficiently address
these issues.

In addition to the previously described requirements, an im-
portant and possibly required feature of WHMS is the ability
to provide embedded decision support, e.g., a means to extract
higher level of information or knowledge from raw biosignal
measurements. In a scenario that numerous wearable systems
are deployed to continuously monitor several critical patients, a
large amount of multidimensional data will be constantly cre-
ated for each user. These data will need to be tediously examined
by professionals in order to detect abnormalities and alarming

health trends. Furthermore, as it was mentioned in the previ-
ous section, the ultimate future goal of employing wearable
health-monitoring technology is to perform early identification
or even prevention of diseases and health episodes. As a result,
advanced inference logic and embedded intelligent information
processing are required in order for the WHMS to be able to
identify alarming trends in the health status of the user and also
to provide patient adaptive alarms or even diagnoses.

Some preliminary efforts toward addressing the previously
mentioned issues are reported in [24] and [26], where re-
searchers have employed mobile phones to implement machine-
learning algorithms to detect heart arrhythmias using the
recorded ECG signals. However, wearable sensor technology
enables the recording of several additional physiological pa-
rameters concurrently with the user’s context [17]. By fusing
together all this information while employing standard medical
knowledge bases, advanced diagnostics, intelligent inference,
and learning mechanisms, an overall estimation of the user’s
health state can possibly be derived at any given time.

Systems that provide such type of functionality, e.g., in-
terpreting medical information, are usually termed as medi-
cal or clinical decision-support systems (DSSs). Numerous ap-
proaches toward DSS can be found in the corresponding lit-
erature [27]–[30]. Traditionally, these systems will require the
input of observed symptoms and acquired laboratory results,
and then, through the use of an inference engine and an ac-
companying knowledge base, they will derive some diagnostic
conclusions. These systems, however, do not usually address the
scenarios of fusing physiological parameters that are extracted
in an unsupervised setting by wearable biosensor technology. In
addition to that, reported systems [31], [32] often rely on con-
tinuous streaming of physiological data to a remote centralized
location for automated analysis and do not provide embedded
decisional capabilities.

Our work presented in this paper aims at establishing a novel
paradigm for an intelligent and interactive WHMS, which is
capable of estimating the user’s health status and which can
provide alerts and information regarding the current status and
context of the user, as well as regarding alarming health trends.
The proposed framework, as in any other DSS, is not meant
to replace the doctor in any way and derive diagnosis for the
patient, but rather to provide estimations regarding the user’s
condition and as such to “to enhance and support the human,
who is ultimately responsible for the clinical diagnosis” [30].

III. PHYSIOLOGICAL PARAMETERS AND SYSTEM

ARCHITECTURE

A wearable biosensor is a miniature sensing device, such as
a surface electrode or a skin patch, which is capable of mea-
suring a certain physiological parameter. A WHMS employing
a variety of biosensors is thus capable of collecting real-time
measurements of vital signs and other physiological signals. By
applying proper signal processing on the measured data, impor-
tant diagnostic features can be extracted from every individual
signal.
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Fig. 1. Tables describing the extraction of symptoms from body signals by
available biosensor technologies and human–system interaction.

However, the fact is that for an accurate estimation of one’s
health condition and the diagnosis of many, if not the most,
diseases several symptoms than just the ones detected from
biosensor measurements, need to be taken into consideration
[33]. These symptoms, like cough, malaise, or chest discomfort
for example, are not quantifiable or measurable via sensors. On
the contrary, in order to get feedback from the patient about
the possible existence of these symptoms, the patient himself
needs to indicate their occurrence. As a result, by incorporating
a speech-recognition module in the system design along with an
automated speech dialogue between device and user, additional
nonmeasurable symptoms related to the physical condition of
the patient could be captured by the WHMS.

The aforementioned concept is illustrated in Fig. 1, where the
table on the left provides a list of physiological parameters and
other information that can be recorded about a given patient.
Then, by using available biosensor technology and also by real-
izing verbal interaction with the user, the symptoms depicted on
the right can be detected, which can provide a comprehensive
description of what is referred to as the clinical presentation.

A generic system architecture that pertains to the described
scenario is depicted in Fig. 2. Physiological biosensors consti-
tute the front-end components of the system and they can be
employed to measure a variety of biosignals, such as the ones
listed in Fig. 1. These wearable physiological sensors can be
either embedded in clothing as smart textiles, or they can be
integrated on other types of wearable devices, such as wrist de-
vices, ear-lobe sensors, finger sensors, arm bands, chest belts,
waist belts, etc. In the latter case, the distributed biosensors are
capable of wirelessly communicating their measurements and
thus constitute a body area network (BAN), which can be either
formed through Bluetooth-enabled devices or through Zigbee
motes. Basic signal conditioning operations such as filtering,
amplifying, and AD conversion or even basic feature extraction
is usually performed by dedicated hardware, which is either
embedded on the sensor as a single IC or on the central node.

The central node of the WHMS consists of some type of
portable platform, such as a personal digital assistant (PDA),

Fig. 2. Generic WHMS architecture.

smart-phone, pocket PC, or even a custom-designed microcon-
troller board. In either case, the WHMS central node is respon-
sible for several tasks, which are as follows.

1) Handling the communication with the on-body-distributed
biosensors, which involves collecting physiological mea-
surements and voice recordings, communication synchro-
nization, sending control signals for adjusting sensors’
parameters, e.g., sample rate, accuracy, etc., and finally,
also receiving sensor status data.

2) Performing additional digital signal processing on the ac-
quired signals for feature extraction.

3) Verifying the received data, e.g., checking the validity of
the received data via an advanced algorithm and discarding
those that are found to be erroneous.

4) Comparing the extracted features or values from each sig-
nal with the thresholds, limits, or patterns located in the
local signal database, which may contain patient-specific
information about abnormal states, in order to possibly
detect any health risks (embedded decision support).

5) Generating alarm signals for the user.
6) Displaying the collected measurements on the GUI in real

time.
7) Transmitting the extracted medical information about the

user to a remote medical station, e.g., to a medical center
or to a physician’s cell phone, either in real time or in
terms of report forms upon request or upon detection of
events.

IV. MODELING OF THE PROGNOSIS METHODOLOGY

The Prognosis language is a theoretical model, around which
the wearable monitoring and early prognosis system is being
designed. The basic hypothesis of this model is that the vari-
ous body or physiological signals produced by the human body
are composed of “symptoms of health,” whose occurrence un-
der certain conditions may indicate the presence of a specific
health risk. The aim of the Prognosis formal language is to
provide an efficient and compact representation of the multiple
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combinations of extracted physiological measurements in order
to aid in the association of “pathological” symptoms and pat-
terns with the detection or estimation of a corresponding health
condition.

The proposed formal language model is coupled with the
generic WHMS architecture described in the previous section.
Specifically, the sensors that are included in the WHMS pro-
vide real-time measurements of physiological data, from which
corresponding symptoms of health are extracted. These symp-
toms may be considered as normal (benign) or alarming (e.g.,
dangerous or hazardous). However, the degree of dangerousness
(or severity) and the degree of actual occurrence of a specific
symptom is fuzzy in nature [34]. As the philosopher of medicine,
Sadegh-Zadeh has stated in [35], “health is a matter of degree,
illness is a matter of degree and disease is a matter of degree.”

As a result, the fuzzy symptoms extracted from the phys-
iological sensors generate the set of terminal symbols of the
Prognosis formal language. The three basic types of symptoms
that can be extracted from the acquired physiological signs cor-
respond to the three basic types of signals or information, which
the system is able to collect about the patient, namely: 1) signals
that are “value-specific” or “single-point”, e.g., their instanta-
neous value carries the actual diagnostic content; 2) signals that
are “morphology-specific”, e.g., their structural morphology and
timing are the elements that carry important diagnostic infor-
mation; and 3) voice recordings that may reveal the presence of
a specific health symptom, as described by the user.

A. Symptom Extraction

For the first type of physiological data, such as systolic and
diastolic blood pressure, body temperature, respiration rate,
oxygen saturation, etc., signal values are commonly divided
in several levels of importance. For example, blood pressure
measurements are commonly classified as indicating hypoten-
sion [low blood pressure (lbp)], a normal blood pressure level,
prehypertension (slightly high blood pressure), stage-1 hyper-
tension (high blood pressure), and stage-2 hypertension (very
high blood pressure). This categorization of signal values to
levels of importance serves the purpose of indicating the sever-
ity level of a physiological measurement and also the purpose
of formally describing the progression of a possible abnormal
health incident.

Instead of characterizing signal levels in a crisp manner, we
can employ linguistic variables, e.g., fuzzy sets [36], to describe
the degree of occurrence of a certain symptom. By fuzzifying
the limits between signal levels, we get the corresponding fuzzy
symptoms. As a result, in the case of systolic blood pressure for
example, we can have the fuzzy signal levels depicted in Fig. 3.
A similar approach can be adopted for defining fuzzy sets for
other types of biosignals, such as very high heart rate (HR)
(vhhr, tachycardia), very low temperature (vlt, hypothermia),
very high respiration rate (tachypnea), etc.

Regarding morphology-specific biosignals, we will only con-
sider ECG signals in this paper. ECG is a recording of the elec-
trical activity of the heart and can be recorded and monitored in
a noninvasive and relatively unobtrusive manner by chest elec-

Fig. 3. Fuzzy symptoms extracted from systolic blood pressure.

trodes [17]. Automatic interpretation of ECG is a complicated
process [37] that requires the following steps:

1) filtering for noise removal (movement artifacts, power-line
interference, and electromyographic noise);

2) detection of heart beats (QRS complexes);
3) extraction of ECG wave parameters and features;
4) classification of beats and rhythms as normal or arrhyth-

mic (premature ventricular or atrial contractions, left or
right bundle branch blocks, ventricular or atrial arrhyth-
mias, etc).

ECG is a well-studied medical tool, which has also been
widely employed in WHMS [17]. Furthermore, the automatic
detection of heart beats, the extraction of ECG-related param-
eters, and the classification of beats and rhythms as normal or
arrhythmic has been widely researched by the engineering and
medical community [38]–[40].

However, the automated analysis (including noise-level esti-
mation) of ambulatory ECG recordings by embedded devices in
unsupervised scenarios is an area of active research with open
problems [24], [41], in which our group is also currently in-
volved. For now, we can assume (without loss of generality)
that the WHMS is equipped with a robust ECG beat and rhythm
classifier that can also provide confidence levels for its outputs.

Finally, as it is illustrated in Fig. 2 and as it will be explained
in Section V, we assume that the WHMS is capable of capturing
additional symptom feedback from the user via an automated
human–device dialogue system.

B. Definition of the Prognosis Language

The way that we will define the Prognosis formal language
is conceived as a means of following the progression of health
symptoms so as to be able to derive, at any given time, an
estimation of the user’s health condition in order to possibly
detect health risks by identifying dangerous health trends.

To be able to do that, we need to embed knowledge into our
model regarding how the occurrence of several symptoms is
related to a variety of disorders and to what degree the presence
of a specific symptom under a certain context points toward a
specific medical disorder or health state. This is what is com-
monly regarded as medical knowledge and it is the element that
will help us to determine the confidence factors relating the
occurrence of a symptom to the detection of a certain disorder.

Description of common disorders and accompanying symp-
toms in the medical literature [33] is usually given in the
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Fig. 4. Correspondence between causal relevance level and weight.

following form: the typical setting of a disorder will be approx-
imately defined, e.g., the age, gender, physiology, and medical
history of typical patients, and then, the clinical presentation,
e.g., a list of the symptoms associated with the disorder, will
be given. The association of symptoms to disorders is usually
quantified in terms of frequency of occurrence given the disease
is present, e.g., always, usually, often, sometimes, and never.
As suggested by Seising [34], these linguistic variables can be
quantified by defining corresponding causal association levels,
for example, as it is depicted in Fig. 4.

We can now proceed to the definition of the Prognosis lan-
guage.

Definition: The Prognosis language is defined as a fuzzy reg-
ular formal language or equivalently as a fuzzy finite-state ma-
chine (FSM). As such, it can be represented as a 7-tuple (Q, Σ,
δ, q0 , F, ϕ, ⊕), where:

1) The set of states Q or equivalently the set of nontermi-
nals V denote the set of all possible health states of the
patient/user. These states signify the various possible com-
binations of health symptoms, which are extracted from
the measured physiological data, from the user’s context,
and from the user’s nonmeasurable symptoms. There are
no explicitly defined accepting/final states F, as any state
included in the FSM signifies a possible health status of
the user and, as a result, there is a continuous transition
(trajectory) between states from the moment the system is
turned on until it is turned off.

2) The alphabet Σ consists of the set of all observable
symptoms (and contexts) in the system. Examples of
these symptoms include: tachycardia, hypertension, fever,
tachypnea, low oxygen saturation (lspo2), ectopic heart
beat, abnormal heart rhythm, cough, chest pain, lying on
back, running, etc. These symptoms are defined as fuzzy
(linguistic) variables and each one has a degree of mem-
bership (DOM) 0 ≤ µ(i, j, x) ≤ 1 associated with it, where
i C- {set of all biosignals measured by the WHMS}, j C- {set
of all symptoms that can be extracted from the ith sensor},
and x is the actual measured value. The DOM denotes the
certainty or strength of the corresponding symptom.

3) The initial state q0 or the start symbol S signifies the initial
(normal) health state of the user.

Fig. 5. Fuzzy FSM for Example 1.

4) The weighting function ϕ: (Q ×Σ × Q) → [0, 1] asso-
ciates a weight to every transition or production rule in the
language and represents the causal associations between
symptoms and disorders/health states.

5) The production rules P (and equivalently the transition
function δ) of the Prognosis language are of the form
A → αB, where A signifies the current health state of the
user, B is the new estimated health state (B can be equal
to A), and α is a new observed symptom that is being
processed (consumed) by the language.

6) ⊕ is a t-norm (in this case the min operator).
In order to clarify how transitions are made and how the

corresponding confidence score of the current state of the model
is evaluated, we will now consider a somewhat trivial example,
which we will then gradually make more complex to illustrate
the operation of the Prognosis regular language:

Example 1: Let us consider the trivial case, whereby the
WHMS measures only one parameter, e.g., HR, which can only
give rise to three individual fuzzy symptoms: bradycardia, nor-
mal HR (nhr), and tachycardia. We will denote these states as B,
N , and T , respectively, and consider B and T as pathologic and
N as healthy. In addition to that let us assume that the symptoms
that can be extracted from the HR measurements are three as
well, e.g. “low HR” (denoted as “b”), “normal HR” (denoted as
“n”) and “high HR” (denoted as “h”). In this simplistic example,
we can consider all the weights corresponding to transitions (or
production rules) to be equal to one, e.g., wN →N = wN →T =
wN →B = wT →T = wT →N = wB→B = wB→N = 1.

The FSM that corresponds to Example 1 can be seen in Fig. 5
(N is the starting state). Now assume that the following sequence
of symptom-confidence pairs is extracted: n(1.0), n(0.8), h(0.7),
h(0.8), h(0.9), h(1.0), h(1.0), h(0.8), h(0.6), n(0.6), b(0.6), where
in this case, we have only considered the symptom with the high-
est confidence in each time instant. The sequence of transitions
for this case is given in Table I (membership levels are actually
computed for all three physiological states in the FSM, but here
only the state corresponding to each new transition is depicted).

We now want to go through the sequence of extracted symp-
toms and derive the estimated state of the fuzzy FSM along with
the corresponding confidence level. We assume that we begin at
state N with confidence 1.0. At every derivation step, we will
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TABLE I
STATE TRANSITION SEQUENCE FOR EXAMPLE 1

apply the following compositional rule of inference:

µ = max
s∈S

{min(µSi
(s), wR (s))}. (1)

In the aforementioned formula, µSi
(s) signifies the DOM or

the confidence level of the Si symptom and wR (s) denotes the
connection weight between the current state and the state we
are transitioning to. The aforementioned formula means is that
when a new symptom is acquired, we will look for the most
plausible transition (or production rule), by trying to find the
one that maximizes the confidence level. The confidence level
of a transition is defined as the “fuzzy AND,” e.g., the mini-
mum value of the symptom fuzziness level and the weight of
the transition. Finally after the value µ has been computed, we
will evaluate the confidence of the new state as the average of
the previous state and the new computed confidence µ. How-
ever, when a transition is made to a new state, the complement
of the previous stage’s confidence level is averaged with the
transition’s strength in order to estimate the confidence of the
new state. This is done in order to account for the degree of evi-
dence against that new state, given that the user was previously
in different kind of state.

Example 2: We now consider a more complex example, which
is based on the previous paradigm. We assume now that the
WHMS can measure the HR and the body temperature, and
that the corresponding states that interest us are the same states,
as mentioned earlier for the HR and the following three states
for the temperature: fever (F ), normal temperature (N ), and
hypothermia (C). As a result the total number of states in the
current FSM will be 3 × 3 = 9 states: NN, NF, NC, TN, TF, TC,
BN, BF, and BC, whereby the first letter signifies the state of
the HR value and the second letter the one of body temperature.

Furthermore, in our current example, we account for the case
where the symptoms extracted from the HR measurement in-
clude additional and finer fuzzy sets, e.g., “very low HR” (vlhr),
“low HR” (lhr), nhr, “high HR” (hhr), and vhhr. Correspondingly
for the temperature values, we will have vlt, “low temperature”
(lt), “normal” (nt), “high temperature” (ht), and “very high tem-

Fig. 6. Fuzzy FSM for Example 2.

perature” (vht). Consequently, in the current case, the weights
on the transitions will have a bigger impact, as for example,
there is a different contribution of a “hhr” value to the state
tachycardia than the contribution from the symptom “vhhr”.
The corresponding FSM of Example 2 is depicted in Fig. 6.

In this case, we can consider the Prognosis model as simu-
lating two fuzzy FSMs in parallel. For every type of biosignal,
corresponding fuzzy symptoms are continuously extracted and
contribute to state transitions in the manner that was described
in Example 1. By combining the confidence level of parallel
states, we can deduct an overall confidence for the current state
in Fig. 2. Using this approach, the aforementioned model can
be expanded to consider all types of symptoms extracted from
the physiological measurements described in the previous sub-
section. However, in the case of detectable conditions, symptom
contributions to the corresponding state should be weighted ap-
propriately, according to the causal association relevance. This
is illustrated in the following example.

Example 3: Finally, we will consider a more concrete exam-
ple, which will illustrate the application of the proposed formal
language approach in estimating the user’s health, and conse-
quently, accessing the risk level of the user’s health status. In
this example, we will assume that the system is capable of con-
tinuously monitoring the following physiological parameters:
ECG, HR, blood pressure, oxygen saturation, respiration rate,
and that, it is also able to capture verbal feedback from the
user. Furthermore, let the set of extractable symptoms be of the
form lspo2, vhhr, “low blood pressure” (lbp), etc. Additionally,
consider the following symbolic representations for user health
states.

1) S1 : Hypoxemia.
2) S2 : Coughing.
3) S3 : Hypotension.
4) S4 : Tachycardia.
5) S5 : Dizziness, weakness, or nausea.
In Fig. 7, a part of the Prognosis fuzzy FSM that corresponds

to the aforementioned system is shown. In Fig. 7, several se-
lected user health states are depicted along with a small subset
of symptoms that cause transitions between these states (not all
possible transitions are being shown to avoid confusion). The
combination of S3 , S4 , and S5 have been known to be an indica-
tion (are always present) of acute cardiogenic shock [33], [42]
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Fig. 7. Fuzzy FSM for Example 3.

and possible additional symptoms, such as tachypnea, arrhyth-
mias, and sweating can further enhance that indication and also
increase the severity level of the condition. In addition to that,
the state S1S2 corresponds to a strong indication of anoxic syn-
cope, a hypothesis that is enhanced by the presence of dizziness
or nausea.

We can now consider the following scenario. The user is
initially in state N , and then, gradually his blood pressure levels
start dropping and his pulse rate starts increasing. This transition
is depicted in Table II, where a series of hypothetical fuzzy
symptoms (along with their confidence level) are extracted and
the corresponding estimated health state is shown (of course,
this could happen in a more gradual or complex manner, but we
assume relatively rapid transitions here for the sake of discussion
and without loss of generality). As the state S3S4 is close to the
“high risk” state S3S4S5 the system decides to inquire the user
regarding the presence of additional symptoms. Given the case
that the user indicates the presence of dizziness, the system
may deduct a transition to the neighboring state S3S4S5 , which
requires immediate attention, and thus, the system will generate
an alarm and notify the healthcare provider or a supervising
physician.

To evaluate the confidence or degree of support of a user
health state after every “collection cycle” of physiological mea-
surements (2), as shown at the bottom of this page, is applied,
where N is the number of biosignals that did not change state,
M is the number of biosignals that did change state, µSi

is the
confidence for the state of the ith biosignal, and µ(n) is the over-
all confidence of the health state estimation at discrete time n.

TABLE II
STATE TRANSITION SEQUENCE FOR EXAMPLE 3

In estimating the confidence of the state S3S4S5 , a weighted
average of the strength of the symptoms that are causally associ-
ated with the specific condition will be calculated. In addition to
that, a bias b will be used, representing the following confidence
level that the user is indeed in the previous stage S3S4 :

µD =
b +

∑N
i=1 wR (si)µ(si)

1 +
∑N

i=1 wR (si)
. (3)

V. SPN INTERACTION MODELING

As it was mentioned in Section III, the Prognosis WHMS
includes a human–device interaction (HDI) component. This
component enables the human user to interactively communi-
cate with the WHMS device and provide to it additional in-
formation, which is particularly important for a more accurate
prognosis of his/her health condition. Thus, in this section, we
graphically present the stochastic Petri net model (SPN) for the
interaction scheme between the human user and the Prognosis
wearable device. But first, let us define what an SPN model
is [43], [44].

Definition: A SPN model is defined as an 11-tuple {P , T , A,
I , O, M, X, C, L, D, S}, where:

1) P : a finite set of places {Pi, i ∈ Z} that represent partic-
ular states of a physical component;

2) T : a finite set of transitions, {Tj , j ∈ Z} that represent a
process performed between two states;

3) A: a finite set of arcs {ar
ij , r, i, j ∈ Z} that represent rela-

tionships among places (Pi, Pj );
4) Ii ⊂ (P × T ), represents the input function;
5) Oj ⊂ (T × P ), represents the output function;
6) Mi : a vector of marking (tokens) (mij , i, j ∈ Z) that rep-

resent the status of the places;
7) X: a vector of time values (xi, i ∈ Z) related with the time

required by a process to be performed;

µ(n) =
(1/(N + 1)){(

∑N
i=1 µSi

(n − 1)) + µ(n − 1)} + (1/M)
∑M

i=1 µSi
(n − 1)

2
. (2)
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Fig. 8. SPN state diagram of the user’s health conditions. The circles represent
states, the thick lines represent transitions (associated with probabilities), and
the arrows represent the flow of the tokens that reflect the operation of the model
and the transitions from one state to other states.

8) C: the alphabet {ci, i ∈ Z} of communication;
9) L: a finite set of possibly marking-dependent firing rates

{li , i ∈ Z} associated with the transitions;
10) D: a finite set {di, i ∈ Z} of delays associated with the

transitions;
11) S: a finite set of structural properties {si, i ∈ Z} associ-

ated with places.
The SPN models functional properties of a system, such as

timing, parallelism, concurrency, synchronization, and prob-
abilities of occurrence of events. Fig. 8 graphically shows
the SPN model of the human health conditions [symptoms
(S1 , S2 , . . . , Sn ), positions (P1 , P2 , . . . , Pr ) of the symptoms
on the human body, and intensity levels (L1 , L2 , . . . , Lk ) of the
symptoms]. In particular, when the user is ill, the state “sick”
(which can be considered as a subset of states in the Prognosis
fuzzy FSM) is active in the SPN diagram. At that health condi-
tion, the user will be able to verbally inform the Prognosis device
about his/her symptoms associated with no sensory data. More
specifically, if the user has pain (state Pi), the device will always
issue a token to the transition (ti) in order for the response from
the user to be taken (or accepted) by the device and the device
to issue an additional token, so that the user might be able to
verbally provide information regarding his/her health condition.
The aforementioned example displays such a scenario.

VI. CONCLUSION

In this paper, we have presented a physiological data fusion
methodology that is applicable to WHMSs. We defined a novel
model based on a fuzzy regular formal language to describe
the current state of health of the WHMS user, which considers
symptom ambiguity and causal relationships between various

disorders and symptoms to derive a thorough estimation with a
certain degree of confidence. It should be once again stressed
that the goal of this system is not to provide an accurate diag-
nosis of the user’s condition, but rather we are hoping that such
a solution can lead to early detection, and hopefully, also to
prevention of health episodes by carefully following, capturing,
and describing the health trends recorded from physiological
and contextual sensors. Finally, we have presented a detailed
SPN model of the HDI, which illustrates the way an automated
dialogue can take place between the user and the WHMS.

Future work includes setting up a full system prototype and
also employing machine-learning methodologies to achieve sys-
tem adaptability to the individual user [45]. Efficient method-
ologies for embedded ECG analysis will also be investigated.
Finally, a large set of clinical tests will need to be carried out
in order to evaluate the proposed system and to fine-tune its
parameters.
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